CHAPTER &

Trees

51 INTRODUCTION

5.1.1 Terminology

In this chapter we shail study a very important data object, the tree. Intuitively, a tree
structure means that the data are organized in a hierarchical manner. One very common
place where such a structure arises is in the investigation of genealogies. There are two
types of genealogical charts that are used to present such data: the pedigree and the
lineal chart. Figure 5.1 gives an example of each.

The pedigree chart of Figure 5.1(a) shows someone’s ancestors, in this case those
of Dusty, whose two parents are Honey Bear and Brandy. Brandy’s parents are Coyote
and Nugget, who are Dusty’s grandparents on her father’s side. The chart continues one
more generation back to the great-grandparents. By the nature of things, we know that
the pedigree chart is normally two-way branching, though this does not allow for
inbreeding. When inbreeding occurs, we no longer have a tree structure unless we insist
that each occurrence of breeding is separately listed. Inbreeding may occur frequently
when describing family histories of flowers or animals. :

Dusty

T 1
Honey Bear Brandy
L S E—
Brunhilde Terry : Coyote Nugget
-
Gill Tansey Tweed Zoe Crocus Primrose Nous Belle
{a) Pedigree

Proto Indo-European

| 1
Ttalic Hellenic Germanic

S T E—

Osco-Umbrian Latin Greek North West

1 [T

T 1 1 I 1 1
Oscan Umbrian Spanish French Italian Icelandic Norwegian Swedish Low High Yiddish

(b) Lineat

Figure 5.1: Two types of genealogical charts

The lineal chart of Figure 5.1(b), though it has nothing to do with people, is still a
genealogy. It describes, in somewhat abbreviated form, the ancestry of the modern
European languages. Thus, this is a chart of descendants rather than ancestors, and each
item can produce several others. Latin, for instance, is the forebear of Spanish, French,
and Italian. Proto Indo-European is a prehistoric language presumed to have existed in
the fifth millenium 8c. This tree does not have the regular structure 0f the pedigree
chart, but it is a tree structure nevertheless.

With these two examples as motivation, let us define formally what we mean by a
tree.

Definition: A tree is a finite set of one or more nodes such that
(1} There is a specially deéignalcd node called the root.

(2) The remaining nodes are partitioned into » >0 disjoint sets T, ***, T,, where
each of these sets is a tree. Ty, - - -, T, are called the subtrees of the root. O

Introduction 193

Notice that this is a recursive definition. If we return to Figure 5.1, we see that the
roots of the trees are Dusty and Proto Indo-European. Tree (a) has two subtrees, whose
roots are Honey Bear and Brandy; tree (b) has three subtrees, with roots Italic, Hellenic,
and Germanic. The condition that T, -+, T, be disjoint sets prohibits subtrees from
ever connecting together (i.e., there is no cross-breeding). It follows that every item ina
tree is the root of some subtree of the whole. For instance, Osco-Umbrian is the root of a
subtree of Italic, which itself has two subtrees with the roots Oscan and Umbrian.
Umbrian is the root of a tree with no subtrees. :

There are many terms that are often used when referring to trees. A node stands
for the item of information plus the branches to other nodes. Consider the tree in Figure
5.2. This tree has 13 nodes, each item of data being a single letter for convenience. The
root is A, and we will normally draw trees with the root at the top.

LEVEL

Figure 5.2: A sample tree

The number of subtrees of a node is called its degree. The degree of A is 3, of Cis
1, and of F is zero. Nodes that have degree zero are called leaf or terminal nodes.
{K,L.F,G,M,1,J} is the set of leaf nodes. Consequently, the other nodes are referred to
as nonterminals. The roots of the subtrees of a node X are the children of X. X is the
parent of its children. Thus, the children of D are H, [, and J; the parent of Dis A, Chil-
- dren of the same parent are said to be siblings. H, I, and J are siblings. We can extend
this terminology if we need to so that we can ask for the grandparent of M, which is D,
and so on. The degree of a tree is the maximum of the degree of the nodes in the tree.
The tree of Figure 5.2 has degree 3. The ancestors of a node are all the nodes along the
path from the root to that node. The ancestors of M are A, D, and H.
The level of a node is defined by letting the root be at level one®. If a node is at

level £, then its children are at level / + 1. Figure 5.2 shows the levels of all nodes in that
tree, The height or depth of a tree is defined to be the maximum level of any node in the
tree. Thus, the depth of the tree in Figure 5.2 is 4.

5.1.2 Representation of Trees

5.1.2.1 Llist Representation

There are several ways to draw a tree besides the one presented in Figure 5.2. One use-
ful way is as a list. The tree of Figure 5.2 could be written as the list

(AB(E(K,L),F),C(G).DHM),LI))

The information in the root node comes first, followed by a list of the subtrees of that
node. Figure 5.3 shows the resulting memory representation for the tree of Figure 5.2. If
we use this representation, we can make use of many of the general functions that we
originally wrote for handling lists.

E| 4+=|K| 4= L|0 H| 1=M|0

tag fields not shown

Figure 5.3: List representation of the tree of Figure 5.2

For several applications it is desirable to have a representation that is specialized
to trees. One possibility is to represent each tree node by a memory node that has fields
for the data and pointers to the tree node’s children. Since the degree of each tree node
may be different, we may be tempted to use memory nodes with a varying number of
pointer fields. However, as it is often easier to write algorithms for a data representation
when the node size is fixed, in practice one uses only nodes of a fixed size to represent
tree nodes. For a tree of degree &, we could use the node structure of Figure 5.4. Each

Introduction 195

child field is used to point to a subtree. Lemma 5.1 shows that using this node structure
is very wasteful of space.

[DATA | CHILD1 | CHILD2 | — | CHILDk

Figure 5.4: Possible node structure for a tree of degree &

Lemma 5.1: If T is a k-ary tree (i.e., a tree of degree k) with n nodes, each having a
fixed size as in Figure 5.4, then n(k — 1) + 1 of the nk child fields are 0, n = 1.

Proof: Since each non-zero child field points to a node and there is exactly one pointer
to each node other than the root, the number of non-zero child fields in an #-node tree is
exactly n — 1. The total number of child fields in a k-ary tree with » nodes is nk. Hence,
the number of zero fields isnk —(n - D =nk-1)+ 1. O

We shall develop two specialized fixed-node-size representations for trees. Both
of these require exactly two link, or pointer, fields per node.

5.1.2.2 Left Child-Right Sibling Representation

Figure 5.5 shows the node structure used in the left child-right sibling representation.

data
teft child right sibling

Figure 5.5: Left child-right sibling node structure

To convert the tree of Figure 5.2 into this representation, we first note that every
node has at most one leftmost child and at most one closest right sibling. For example,
in Figure 5.2, the leftmost child of A is B, and the leftmost child of D is H. The closest
right sibling of B is C, and the closest right sibling of H is I. Strictly speaking, since the
order of children in a tree is not important, any of the children of a node could be the
leftmost child, and any of its siblings could be the closest right sibling. For the sake of
definiteness, we choose the nodes based on how the tree is drawn. The left child field of

. each node points to its leftmost child (if any), and the right sibling field points to its
closest right sibling (if any). Figure 5.6 shows the tree of Figure 5.2 redrawn using the
left child-right sibling representation.

B
(B—(®)
OO

Figure 5.6: Left child-right sibling representation of tree of Figure 5.2

5.1.2.3 Representation as a Degree-Two Tree

To obtain the degree-two tree representation of a tree, we simply rotate the right-sibling
pointers in a left child-right sibling tree clockwise by 45 degrees. This gives us the
degree-two tree displayed in Figure 5.7. In the degree-two representation, we refer to
the two children of a node as the left and right children. Notice that the right child of the
root node of the tree is empty. This is always the case since the root of the tree we are
transforming can never have a sibling. Figure 5.8 shows two additional examples of
trees represented as left child-right sibling trees and as left child-right child (or degree-
two) trees. Left child-right child trees are also known as binary trees,

EXERCISES

. Write a function to input a tree given as a generalized list (e.g.,
(AB(E(K,L),F),C(G),D(H(M),IL]}))) and create its internal representation
using nodes with three fields: tag, data, and link.

2. Write a function that reverses the process in Exercise 1 and takes a pointer to a
tree and outputs it as a generalized list,

3. [Programming Preject] Write the Write the following C functions.

(a) [read]: accept a tree represented as a parenthesized list as input and create
the generalized list representation of the tree (see Figure 5.3)

Binary Trees 197

Figure 5.7: Left child-right child tree representation of tree of Figure 5.2

(b)
(c}
(d)
()

{copy]: make a copy of a tree represented as a generalized list
[isequal}: test for equality between two trees represented as generalized lists
[clear]: delete a tree represented as a generalized list

[write]: output a tree in its parenthesized list notation

Test the correctness of your functions using suitable test data.

5.2 BINARY TREES

5.2.1 The Abstract Data Type

We have seen that we can represent any tree as a binary tree. In fact, binary trees are an
important type of tree structure that occurs very often. The chief characteristic of a
binary tree is the stipulation that the degree of any given node must not exceed two. For
binary trees, we also distinguish between-the left subtree and the right subtree, while for
trees the order of the subtrees is irrelevant. In addition, a binary tree may have zero
nodes. Thus, a binary tree is really a different object than a tree.

Definition: A binarv rree is a finite set of nodes that is either emptv or consists of a root

) (&)
®) (® ®

tree left child-right sibling tree binary tree
tree left child-right sibling tree C
binary tree

Figure 5.8: Tree representations

and two disjoint binary trees called the left subtree and the right subtree. O

ADT 5.1 contains the specification for the binary tree ADT. This structure defines
only a minimal set of operations on binary trees which we use as a foundation on which
to build additional operations.

Let us carefully review the distinctions between a binary tree and a tree. First,
there is no tree having zero nodes, but there is an empty binary tree. Second, in a binary
tree we distinguish between the order of the children while in a tree we do not. Thus, the
two binary trees of Figure 5.9 are different since the first binary tree has an empty right
subtree, while the second has an empty left subtree. Viewed as trees, however, they are
the same, despite the fact that they are drawn slightly differently.

Figure 5.10 shows two special kinds of binary trees. The first is a skewed tree,
skewed to the left, and there is a corresponding tree that skews to the right. The tree of
Figure 5.10(b) is called a complete binary tree. This kind of binary tree will be defined
formally later. Notice that all leaf nodes are on adjacent levels. The terms that we intro-
duced for trees such as degree, level, height, leaf, parent, and child all apply to binary
trees in the natural way. .

Binary Trees 199

ADT Binary_Tree (abbreviated BinTree) is
objects: a finite set of nodes either empi; or consisting of a root node, left

Binary_Tree, and right Bmary_Tree
functions:

for all bt,bt1.,bt2 € BinTree, item € element

BinTree Create()
Boolean IsEmpty(br)

BinTree MakeBT(btl, item, bt2)

BinTree Lchild(bt)
element Data(bt)

BinTree Rchild(bt)

i

creates an empty binary tree

if (bt == empty binary tree)
return TRUF else return FALSE
return a binary tree whose left
subtree is bt1, whose right
subtree is b2, and whose root
node contains the data item.

if (IsSEmpty(bt)) return error else
return the left subtree of bt

if (IsEmpty(b1)) return error else
return the data in the root node of bz,
if (IsEmpty(b1)) return error else
return the right subtree of br.

ADT 5.1: Abstract data type Binary_Tree

(&)
(&)

Figure 5.9: Two different binary trees

5.22 Properties of Binary Trees

Before examining data representations for binary trees, let us make some observations
about such trees. In particular, we want to determine the maximum number of nodes in a
binary tree of depth k and the relationship between the number of leaf nodes and the

number of degree-two nodes in a binary tree.

Figure 5.10: Skewed and complete binary trees

Lemma 5.2 [Maximum number of nodes|:

(1) The maximum number of nodes on level i of a binary tree is 2", i > 1.

(2) The maximum number of nodes in a binary tree of depth kis 25 — 1, k> 1.

Proof;
(1).The proof is by induction on i.

Induction Base: The root is the only node on level i = 1. Hence, the maximum number
of nodesonlevel i=1is2' =2% =1,

Induction Hypothesis: Let i be an arbitrary positive integer greater than 1. Assume that
the maximum number of nodes on level i -1 is 272,

Induction Step: The maximum number of nodes on level i — 1 is 27 by the induction
hypothesis. Since each node in a binary tree has a maximum degree of 2, the maximum
number of nodes on level i is two times the maximum number of nodes on level i—1, or
21,

Binary Trees 201

(2) The maximum number of nodes in a binary tree of depth kis

k k
Y} (maximum number of nodes on level i) = ZZH =210
i=1 i=1

Lemma 5.3 [Relation between number of leaf nodes and degree-2 nodes}:. For any
nonempty binary tree, T, if ng is the number of leaf nodes and n, the number of nodes of
degree 2, thenng =n, + 1.

Proof: Let ny be the number of nodes of degree one and n the total number of nodes.
Since all nodes in T are at most of degree two, we have

n=ng+n+n, (51)
If we count the number of branches in a binary tree, we see that every node except

the root has a branch leading into it. If B is the number of branches, then n = B+1. All
branches stem from a node of degree one or two. Thus, B=n, + 2n,. Hence, we obtain

n=B+1=n;+2ny+1 (5.2)
Subtracting Eq. (5.2) from Eq. (5.1) and rearranging terms, we get
Hg =R3 +1 0O

In Figure 5.10{a), ny = 1 and n, = 0; in Figure 5.10(b), ny = Sand n, = 4.

We are now ready to define full and complete binary trees.

Definition: A fuil binary tree of depth k is a binary tree of depth & having 2¥ — 1 nodes,
k20.0

By Lemma 5.2, 2¥ — 1 is the maximum number of nodes in a binary tree of depth k.
Figure 5.11 shows a full binary tree of depth 4. Suppose we number the nodes in a full
binary tree starting with the root on level 1, continuing with the nodes on level 2, and so
on. Nodes on any level are numbered from left to right. This numbering scheme gives
us the definition of a complete binary tree.

Definition: A binary tree with n nodes and depth k is complete iff its nodes correspond to
the nodes numbered from 1 to # in the full binary tree of depth &. O

From Lemma 5.2, it follows that the height of a complete binary tree w1th n nodes
is [loga(n + 1)]. (Note that [x] is the smallest integer >x.)

Figure 5.11: Full binary tree of depth 4 with sequential node numbers

5.2.3 Binary Tree Representations

5.2.3.1 Array Representation

The numbering scheme used in Figure 5.11 suggests our first representation of a binary
tree in memory, Since the nodes are numbered from 1 1o »n, we can use a one-
dimensional array to store the nodes. Position 0 of this array is left empty and the node
numbered i in Figure Figure 5.11 is mapped to position i of the array. Using
Lemma 5.4 we can easily determine the locations of the parent, left child, and right child
of any node, ¢, in the binary tree.

Lemma 5.4: If a complete binary tree with n nodes is represented sequentially, then for
any node with index {, 1 £/ < n, we have

(1) parent(i}isat | i/2)ifi# 1. Ifi=1,{isat the root and has no parent.
(2} leftChild (i} is at 2i if 2i <n. If 2i > n, then i has no left child.
(3) rightChild(Nisat2i+1if2i+1<n. If2i+ 1> n, then i has no right child.

Proof: We prove (2). (3) is an immediate consequence of (2) and the numbering of
nodes on the same level from left to right. (1) follows from (2) and (3). We prove (2) by
induction on i. For i = 1, clearly the left child is at 2 unless 2 > », in which case i has no
left child. Now assume that for all j, 1 < j < i, leftChild (j) is at 2j. Then the two nodes
immediately preceding leftChild (i +1) are the right and left children of i. The left child
is at 2i. Hence, the left child of i + 1isat 2i + 2 = 2(i + 1) unless 2(i + 1) > n, in which
case { + 1 has no left child. O

Binary Trees 203

This representation can clearly be used for alt binary trees, though in most cases
there will be a lot of unutilized space. Figure 5.12 shows the array representation for
both trees of Figure 5.10. For complete binary trees such as the one in Figure 5.10(b), .
the representation is ideal, as no space is wasted. For the skewed tree of Figure 5.10(a),
however, less than half the array is utilized. In the worst case a skewed tree of depth &
will require 2¥—1 spaces. Of these, only k will be used.

tree tree

[0] - -
{1] A A
2] B | B
{3] I C
{4 - c D
{5] - E
(6] - F
(7] - G
(8] D H
9] - I
(b) Tree of Figure 5.10(b)
[16] E

(a) Tree of Figure 5.10(a)

Figure 5.12: Array representation of the binary trees of Figure 5.10

5.2.3.2 Linked Representation

Although the array representation is good for complete binary trees, it is wasteful for
many other binary trees. In addition, the representation suffers from the general inade-
quacies of sequential representations. Insertion and deletion of nodes from the middle of
a tree require the movement of potentially many nodes to reflect the change in level
number of these nodes. These problems can be overcome easily through the use of a
linked representation. Each node has three fields, leftChild, dara, and rightChild, and

is defined in C as:

typedef struct node *treePointer;

typedef struct {
int data;
treePointer leftChild, rightChild;
} node;

‘We shall draw a tree node using either of the representations of Figure 5.13.

leftChild data rightChild

leftChild rightChild

Figure 5.13: Node representations

Although with this node structure it is difficult to determine the parent of a node,

we shall see that for most applications, this node structure is adequate. I it is necessary
to be able to determine the parent of random nodes, then a fourth field, parent, may be
included in the class TreeNode. The representation of the binary trees of Figure 5.10
using this node structure is given in Figure 5.14. The root of the tree is stored in the data
member root of Tree. This data member serves as the access pointer to the tree.

EXERCISES

1. For the binary tree of Figure 5.15, list the leaf nodes, the nonleaf nodes, and the
level of each node.

2. What is the maximum number of nodes in a k-ary tree of height A? Prove your
answer.

3. Draw the internal memory representation of the binary tree of Figure 5.15 using
(a) sequential and (b} linked representations.

4. Extend the array representation of a complete binary tree to the case of complete

trees whose degree is d, d>1. Develop formulas for the parent and children of the
node stored in position { of the array.

Binary Tree Traversals 205

root root

[0[E[0] [0[F[o] [0]G[0]

nog

neo AL
SN

L Io[0]

ofujo] [o]r]0]

(a) (b)

Figure 5.14: Linked representation for the binary trees of Figure 5.10

Figure 5.15: Binary tree for Exercise 1

5.3 BINARY TREE TRAVERSALS

There are many operations that we often want to perform on trees. One notion that arises
frequently is the idea of triversing a tree or visiting each node in the tree exactly once.
When a node is visited, some operation (such as outputting its dara field) is performed on
it. A full traversal produces a linear order for the nodes in a tree. This linear order,

given by the order in which the nodes are visited, may be familiar and useful. When
traversing a binary tree, we want (o treat each node and its subtrees in the same fashion.
If we let I, V, and R stand for moving left, visiting the node, and moving right when at a
node, then there are six possible combinations of traversal: LVR, LRV, VLR, VRL, RVL,
and RLV. If we adopt the convention that we traverse left before right, then only three
traversals remain: LVR, LRV, and VLR. To these we assign the names inorder, postorder,
and preorder, respectively, because of the position of the V with respect to the L and the
R. For example, in postorder, we visit a node after we have traversed its left and right
subtrees, whereas in preorder the visiting is done before the traversal of these subtrees.

There is a natural correspondence between these traversals and producing the
infix, postfix, and prefix forms of an expression. Consider the binary tree of Figure 5.16.
This tree contains an arithmetic expression with the binary operators add (+), multiply
(*), and divide (/) and the variables A, B, C. D, and E. For each node that contains an
operator, its left subtree gives the left operand and its right subtree the right operand. We
use this tree to illustrate each of the traversals.

jol
®
<®

Figure 5.16: Binary tree with arithmetic expression

5.3.1 Inorder Traversal

Informally, inorder traversai calls for moving down the tree toward the left until you can
go no farther. Then you ‘‘visit”” the node, move one node to the right and continue. If
you cannot move to the right, go back one more node. A precise way of describing this
traversal is by using recursion as in Program 5.1.

Recursion is an elegant device for describing this traversal. Figure 5.17 is a trace

Binary Tree Traversals 207

void inorder (treePointer ptr)
{/* inorder tree traversal */
if (ptr) {
inorder (ptr—leftChild);
printf ("%d", ptrodata);
inorder (ptr—rightChild) ;

}

Program 5.1: Inorder traversal of a binary tree

of inorder using the tree of Figure 5.16. Each step of the trace shows the call of inorder,
the value in the root, and whether or not the printf function is invoked. The first three
columns show the first 13 steps of the traversal. The second three columns show the
remaining 14 steps. The numbers in columns 1 and 4 correspond to the node numbers
displayed in Figure 5.16 and are used to show the location of the node in the tree.

Call of Value Value
inorder inroot Action | inorder inroot Action
| + 11 C
2 * 12 NULL
3 * 11 C printf
4 / 13 NULL
5 A 2 * printf
6 NULL 14 D
5 A printf 15 NULL
7 NULL 14 D printf
4 !/ printf 16 NULL
8 B 1 + printf
9 NULL 17 E
8 B printf 18 NULL
10 NULL 17 E printf
3 * printf 19 NULL

Figure 5.17: Trace of Program 5.1

Qince there are 10 nndec in the trea innrdor ic inunlbad 10 timao fae tha anomeelaca

traversal. The data fields are output in the order:
A/B*C*D+E
which corresponds to the infix form of the expression.

5.3.2 Preorder Traversal

The code for the second form of traversal, preorder, is given in Program 5.2. In words,
we would say ‘‘visit a node, traverse left, and continue. When you cannot continue,
move right and begin again or move back until you can move right and resume.” The
nodes of Figure 5.16 would be output in preorder as

+**/ABCDE

which we recognize as the prefix form of the expression.

void preorder (treePointer ptr)
{/* preorder tree traversal */
if (ptr) |
printf("%4d", ptr—data);
preorder (ptr—leftChild);
preorder (ptr—rightChild);

}

Program 5.2: Preorder traversal of a binary tree

53.3 Postorder Traversal

The code for postorder traversal is given in Program 5.3. On the tree of Figure 5.16, this
function produces the following output:

AB/C*D=*E +

which is the postfix form of our expression.

Binary Tree Traversals 209

void postorder (treePointer ptr)
{/* postorder tree traversal */
if (ptr} |
postorder (ptr—leftChild);
postorder (ptr—=rightChild) ;
printf("%d", ptr—data);
) .

Program 5.3: Postorder traversal of a binary tree

5.3.4 Iterative Inorder Traversal

Although we have written the inorder, preorder, and postorder traversat functions recur-
sively, we can develop equivalent iterative functions. Let us take inorder traversal as an
example. To simulate the recursion, we must create our own stack. We add nodes to and
remove nodes from our stack in the same manner that the recursive version manipulates
the system stack. This helps us to understand fully the operation of the recursive ver-
sion. Figure 5.17 implicitly shows this stacking and unstacking. A node that has no
action indicates that the node is added to the stack, while a node that has a printf action
indicates that the node is removed from the stack. Notice that the left nodes are stacked
until a null node is reached, the node is then removed from the stack, and the node’s right-
child is stacked. The traversal then continues with the left child. The traversal is com-
plete when the stack is empty. Function iterlnorder (Program 5.4) stems directly from
this discussion. The stack function push differs from that defined in Chapter 3 only in
that the type of the elements in the stack ts different. Similarly, the pop function returns
a value of type treePointer rather than of type element. It returns NULL in case the stack
is empty.

Analysis of iterInorder: Let n be the number of nodes in the tree. If we consider the
action of iterinorder, we note that every node of the tree is placed on and removed from
the stack exactly once. So, if the number of nodes in the tree is 1, the time complexity is
O(n). The space requirement is equal to the depth of the tree which is O(n). O

5.3.5 Level-Order Traversal

Whether written iteratively or recursively, the inorder, preorder, and postorder traversals
all require a stack. We now turn to a traversal that requires a queue. This traversal,
called level-order traversal, visits the nodes using the ordering suggested by the node

void iterlnorder (treePointer node)

{

int top = -1; /* initialize stack */
treePointer stack [MAX_STACK_SIZE];
for {(;;) {

for{; node; node = node—leftChilg)
push{ncde}; /* add to stack */

node = pop(); /* delete from stack */

if {!'node} break; /* empty stack */

printf ("%d", node—data);

node = node—rightChild;

}

Program 5.4: lterative inorder traversal

numbering scheme of Figure 5.11. Thus, we visit the root first, then the root’s left child,
followed by the root’s right child. We continue in this manner, visiting the nodes at each
new level from the leftmost node to the rightmost node.

The code for this traversal is contained in levelOrder (Program 5.5). This assumes
a circular queue as in Chapfer 3. Function addg differs from the corresponding function
of Chapter 3 only in that the data type of the elements in the queue is different. Simi-
larly, the function deleteq used in Program 5.5 returns a value of type treePointer rather
than of type element. It returns NU/LL in case the queue is empty.

We begin by adding the root to the queue. The function operates by deleting the
node at the front of the queue, printing oul the node’s data field, and adding the node’s
left and right children to the queue. Since a node’s children are at the next lower level,
and we add the left child before the right child, the function prints out the nodes using
the ordering scheme found in Figure 5.11. The level order traversal of the tree in Figure
5.161is:

+xExD/CAB

5.3.6 Traversal without a Stack

Before we leave the topic of tree traversal, we shall consider one final question. Is
binary tree traversal possible without the use of extra space for a stack? (Note that a
recursive tree traversal algorithm also implicitly uses a stack.) One simple solution is to
add a parent field to each node. Then we can trace our way back up to any root and

Binary Tree Traversals 211

void levelOrder (treePointer ptr)
{/* level order tree traversal */
int front = rear = 0;
treePointer queue[MAX-_QUEUE_SIZE];
if (!ptr) return; /* empty tree */
addg({ptr);
for (;;}) |
ptr = deleteq();
if (ptr) {
printf ("%d", ptr->data);
if (ptr—leftChild)
addg{ptr—leftChild);
if (ptr—rightChild}
addg (ptr—rightChild};
}

else break;

}

Program 5.5: Level-order traversat of a binary tree

down again. Another solution, which requires two bits per node, represents binary trees
as threaded binary trees. We study this in Section 5.5. If the allocation of this extra
space is too costly, then we can use the lefrChild and righrChild fields to maintain the
paths back to the root. The stack of addresses is stored in the leaf nodes.

EXERCISES

1. Write out the inorder, preorder, postorder, and level-order traversals for the binary

trees of Figure 5.10.
Do Exercise 1 for the binary tree of Figure 5.11.
Do Exercise 1 for the binary tree of Figure 5.15.

ANl

the stacking and the testing within the loop.)

Write a nonrecursive version of function precrder (Program 5.2).
‘Write a nonrecursive version of function postorder (Program 5.3).

Rework iterInorder (Program 5.4) so that it is as fast as possible. (Hint: Minimize

54 ADDITIONAL BINARY TREE OPERATIONS

54.1 Copying Binary Trees

By using the definition of a binary tree and the recursive versions of inorder, preorder,
and postorder traversals, we can easily create C functions for other binary tree opera-
tions. One practical operation is copying a binary tree. The code for this operation is
containted in copy (Program 5.6). Notice that this function is only a slightly modified
version of postorder (Program 5.3).

treePointer copy{treePointer ocriginal)
{/* this function returns a treePointer to an exact copy
of the original tree */
treePointer temp;
if (original) {
MALLOC {temp, sizeof(*temp)};
temp—leftChild = copy(original—leftChild);
temp—rightChild = copy(original—rightChild);
temp—data = original—data;
return temp;
}
return NULL;
}

Program 5.6: Copying a binary tree

54.2 Testing Equality

Another useful operation is determining the equivalence of two binary trees. Equivalent
binary trees have the same structure and the same information in the corresponding
nodes. By the same structure we mean that every branch in one tree corresponds to a
branch in the second tree, that is, the branching of the two trees is identical. The function
equal (Program 5.7) uses a modification of preorder traversal to test for equality. This
function returns TRUE if the two trees are equivalent and FALSE if they are not.

Additional Binary Tree Operations 213

int equal (treePointer first, treePointer second)
{/* function returns FALSE if the binary trees first and
second are not equal, Otherwise it returns TRUE * /
return ({(!first && 'second) || (first && second &&

(first—data == second—data) &é&
equal(first—eleftChild,second—+leftChild) &&
equal (first—rightChild, second—rightChild))

}

Program 5.7: Testing for equality of binary trees

5.4.3 The Satisfiability Problem

Consider the set of formulas that we can construct by taking variables x|, x3, . X,
and operators A (and), v (or), and = (not). The variables can hold only one of two possi-
ble values, true or false. The set of expressions that we can form using these variables
and operators is defined by the following rules:

(1) A variable is an expression.
(2) If xand y are expressions, then —x, x Ay, XV yare expressions.

(3) Parentheses can be used to alter the normal order of evaluation, which is — before
A before v.

These rules comprise the formulas in the propositional calculus since other operations,
such as implication, can be expressed using —, v, and A,
The expression:

X1V (X3 AT1x3)

is a formula (read as "x; or x4 and not x3"). If x, and x5 are false and x, is true, then
the value of the expression is:

false v (true A — false)
= false v true
= true

The satisfiability probiem for formulas of the propositional calculus asks if there is
an assignment of values to the variables that causes the value of the expression to be

true. This problem was originally used by Newell, Shaw, and Simon in the late 1950s to
show the viability of heuristic programming (The Logic Theorist) and is still of keen
interest to computer scientists.

Again, let us assume that our formula is already in a binary tree, say

(x; Amxy)vi—x, AX3)V Xy

in the tree of Figure 5.18. The inorder traversal of this tree is
X ATIX,y VX A Xg VX

which is the infix form of the expression. The most obvious algorithm to determine
satisfiability is to let (x,, x5, x3) take on all possible combinations of frue and false
values and to check the formula for each combination. For n variables there are 27 pos-
sible combinations of true = ¢ and faise = f. For example, for n = 3, the eight combina-
tions are: (1,4,1), (L4.f), (0.£.0), (0L 1), (Fo1.0), (FLF) (£.fo0), (FFof). The algorithm
will take O(g 2™), or exponential time, where g is the time to substitute values for Xy, X2,
"+, X, and evaluate the expression.

o
ORENO ©
©QQ®

@ ©

Figure 5.18: Propositional formula in a binary tree

To evaluate an expression, we traverse its tree in postorder, When visiting a node
p, we compute the value of the expression represented by the subtree rooted at p. Recall
that, in postorder, the left and right subtrees of a node are traversed before we visit that
node. In other words, when we visit the node p, the sutbexpressions represented by its left
and right subtrees have been computed. So. when we reach the v node on levet 2. the
values of x; A—x; and —x; A x; will already be available to us, and we can apply the

Additional Binary Tree Operations 215

rule for or. Notice that a node containing — has only a right branch, since — is a unary
operator.

The node structure for this problem is found in Figure 5.19. The leftChild and
rightChild fields are similar to those used previously. The field data holds either the
value of a variable or a propositional calculus opetator, while value holds either a value
of TRUE or FALSE.

| lefrChild | data | value | rightChild

Figure 5.19: Node structure for the satisfiability problem

We define this node structure in C as:

typedef enum {not,and, or,true,false} logical;
typedef struct node *treePcinter;
typedef struct {

treePointer leftChild;

logical data;
short int value;
treePointer rightChild;
} node;

We assume that for leaf nodes, node — data contains the current vatue of the vari-
able represented at this node. For example, we assume that the tree of Figure 5.18 con-
tains either TRUE or FALSE in the data field of x, x4, and x5;. We also assume that an
expression tree with n variables is pointed at by root. With these assumptions we can
write our first version of a satisfiability algorithm (Program 3.8).

The C function that evaluates the tree is easily obtained by modifying the original,
recursive postorder traversal. The function postOrderEval (Program 5.9) shows the C
code that implements this portion of the satisfiability algorithm.

EXERCISES
1. Write a C function that counts the number of leaf nodes in a binary tree. Deter-
mine the computing time of the function.

2. Write a C function swaplree that takes a binary tree and swaps the left and right
children of every node. An example is given in Figure 5,20,

for (all?2"” possible combinations) {

1

generate the next combination;
replace the variables by their values;
evaluate root by traversing it in pcstorder;
if (root—value) |

printf (<combination>};

return;

1

printf ("No satisfiable combination\n"};

Program 5.8: First version of satisfiability algorithm

5.5

5.5.1

‘What is the computing time of postOrderEval?

Devise an external representation for the formulas in propositional calculus. Write
a function that reads such a formula and creates its binary tree representation.
What is the complexity of your function?

§ [Programming project] Devise a representation for formulas in the propositional
calculus, Write a C function that inputs such a formula and creates a binary tree
representation of it. Determine the computing time of your function.

THREADED BINARY TREES

Threads

If we look carefully at the linked representation of any binary tree, we notice that there
are more nutl links than actual pointers. Specifically, there are n + 1 null links out of 2 1
total links. A. J. Perlis and C. Thornton have devised a clever way to make use of these
null links. They replace the null links by pointers, called threads, to other nodes in the

tree,

To construct the threads we use the following rules (assume that ptr represents a

node):

(M

)

If ptr — leftChild is null, replace ptr — leftChild with a pointer to the node that
would be visited before pr in an inorder traversal. That is we replace the null link
with a pointer to the inorder predecessor of ptr.

If ptr — rightChild is null, replace ptr — rightChild with a pointer to the node that
would be visited after prr in an inorder traversal. That is we replace the null link
with a pointer to the inorder successor of ptr.

Threaded Binary Trees 217

volid postOrderEval {(treePointer node)
{/* modified post order traversal to evaluate a
propesitional calculus tree */
if (ncde) {
postOrderEval {(node—leftChild) ;
postOrderEval (node—rightChild);
switch (node—data) {
case not: node—=value =
'necde—rightChild—value;
break;
case and: node—value =
nede—rightChild—value &&
nocde—leftChild-svalue;
brezk;
case or: node—value =
node—rightChild—svalue ||
node—leftChild-ovalue;
break;
case true: node—value = TRUE;
break;
case false: node—value

FALSE;

1

Program 5.9: Postorder evaluation function

Figure 5.21 shows the binary tree of Figure 5.10(b) with its new threads drawn in
as broken lines. This tree has 9 nodes and 10 0-links, which have been replaced by
threads. If we traverse the tree in inorder, the nodes will be visited in the order H, D, [,
B, E, A, F, C, G. For example, node E has a predecessor thread that points to B and a suc-
cessor thread that points to A.

When we represent the tree in memory, we must be able to distinguish between
threads and normal pointers. This is done by adding two additional fields to the node
structure, lefiThread and rightThread. Assume that ptr is an arbitrary node in a threaded
tree. If ptr — leftThread = TRUE, then ptr — leftChild contains a thread; otherwise it
contains a pointer to the left child. Similarly, if ptr — rightThread = TRUE, then ptr —
rightChild contains a thread; otherwise it contains a pointer to the right child.

This node structure is given by the following C declarations:

t.SwapTree ()

Figure 5.20: A swap tree example

root

[i o= o]

Figure 5.21: Threaded tree corresponding to Figure 5,10(b)

tvpedef struct threadedTree *threadedPointer;
typedef struct {

short int leftThread;

threadedPointer leftChild;

char data;

threadedPointer rightChild;

short int rightThread;

} threadedTree;

Threaded Binary Trees 219

In Figure 5.21 two threads have been left dangling: one in the left child of H, the
other in the right child of G. In order that we leave no loose threads, we will assume a
header node for all threaded binary trees. The original tree is the left subtree of the
header node. An empty binary tree is represented by its header node as in Figure 5.22.
The complete memory representation for the tree of Figure 5.21 is shown in Figure 5.23.

leftThread leftChild data rightChild rightThread

false

L | 1

Figure 5.22: An empty threaded binary tree

root

/
AT jl
rrTT NG |
| N |
| 1Bl \|f | 7, lel s |
: ik AR :
| (DIl [EL [AT I T C A I« 1A P
I) AT I i tot | | b ' ' |
E /? IE\ LL_"__I_j L= L _2 Y .

(e[e Te] el Tal]

J=false; f = true

Figure 5.23: Memory representation of threaded tree

The variable root points to the header node of the tree, while root — leftChild

points to the start of the first node of the acmal tree. This is true for all threaded trees.
Notice that we have handled the problem of the loose threads by having them point to
the head node, roor.

5.5.2 Inorder Traversal of a Threaded Binary Tree

By using the threads, we can perform an inorder traversal without making use of a stack.
Observe that for any node, ptr, in a threaded binary tree, if ptr — rightThread = TRUE,
the inorder successor of ptr is ptr — rightChild by definition of the threads. Otherwise
we obtain the inorder successor of ptr by following a path of left-child links from the
right-child of p#r until we reach a node with lefiThread = TRUE. The function insucc
(Program 5.10) finds the inorder successor of any node in a threaded tree without using a
stack,

threadedPointer insucc(threadedPointer tree)
{/* find the inorder sucessor of tree in a threaded binary
tree */
threadedPointer temp;
temp = tree—srightChild;
if (!tree—rightThread)
while (!temp—leftThread)
temp = temp—leftChild;
return temp;

}

Program 5.10: Finding the inorder successor of a node

To perform an inorder traversal we make repeated calls to insucc. The operation is
implemented in tinorder (Program 5.11). This function assumes that the tree is pointed
to by the header node’s left child and that the header node’s right thread is FALSE. The
computing time for finorder is still O(n) for a threaded binary tree with # nodes,
although the constant factor is smaller than that of iterinorder.

5.5.3 Inserting a Node into a Threaded Binary Tree

We now examine how to make insertions into a threaded tree. This will give us a func-
tion for growing threaded trees. We shall study only the case of inserting r as the right
child of a node 5. The case of insertion of a left child is given as an exercise. The cases

Threaded Binary Trees 221

void tinorder {(threadedPointer tree)
{/* traverse the threaded binary tree inorder */
threadedPointer temp = tree;
for (;;) |
temp = insucc{temp);
if (temp == tree) break;
printf {"$3c", temp—data);

1

Program 5.11: Inorder traversal of a threaded binary tree

for insertion are

(1) If s has an empty right subtree, then the insertion is simple and diagrammed in Fig-
ure 5.24(a).

(2) If the right subtree of s is not empty, then this right subtree is made the right sub-
tree of r after insertion. When this is done, r becomes the inorder predecessor of a
node that has a leftThread == true field, and consequently there is a thread which
has to be updated to point to r. The node containing this thread was previously
the inorder successor of s. Figure 5.24(b) illustrates the insertion for this case.
The function insertRight (Program 5.12) contains the C code which handles both
cases.

EXERCISES

Draw the binary tree of Figure 5.15, showing its threaded representation.

2. Write a function, insertLeft, that inserts a new node, child, as the left child of node
parent in a threaded binary tree. The left child pointer of parent becomes the left
child pointer of child.

3. Write a function that traverses a threaded binary tree in postorder. What are the
time and space requirements of your method?

4. Write a function that traverses a threaded binary tree in preorder. What are the
time and space requirements of your method?

after

before (b)

Figure 5.24: Insertion of r as a right child of s in a threaded binary tree
5.6 HEAPS

5.6.1 Priority Queues

Heaps are frequently used to implement priority queues. In this kind of queue, the ele-
ment to be deleted is the one with highest (or lowest) priority. At any time, an element
with arbitrary priority can be inserted into the queue. ADT 5.2 specifies a max priority
queue,

Heaps 223

void insertRight (threadedPointer s, threadedPointer r)
{/* insert r as the right child of s */
threadedPointer temp;
r—rightChild = parent—rightChild;
r—rightThread = parent—rightThread;
r—leftChild = parent;
r—leftThread = TRUE;
5—rightChild = child;
s—rightThread = FALSE;
if (!'rorightThread) {
temp = insucc(r);
temp—leftChild = r;

}

Program 5.12: Right insertion in a threaded binary tree

ADT MaxPriorityQueue is
objects: a collection of n > 0 elements, each element has a key
functions:
for all g € MaxPriorityQueue, item € Element, n € integer

H

MaxPriorityCtueue create(max_size) create an empty priority queue.

Boolean isEmpty(g, n) u= if (n > 0) return 7TRUE
else return FALSE
Element top(q, n) n= if (tisEmpty(qg, n)) return an instance

of the largest element in ¢
else return error.
Element pop{(q, n) x= i (lisEmpty(qg, n)) return an instance
: of the largest element in ¢ and
remove it from the heap else return error,
insert item into pg and return the
resulting priority gueue.

MaxPriorityQueue push{q, item, n)

ADT 5.2: Abstract data type MaxPriorityQueue

Example 5.1: Suppose that we are selling the services of a machine. Each user pays a
fixed amount per use. However, the time needed by each user is different. We wish to
maximize the returns from this machine under the assumption that the machine is not to
be kept idle unless no user is available. This can be done by maintaining a priority
quene of all persons waiting to use the machine. Whenever the machine becomes avail-
able, the user with the smallest time requirement is selected. Hence, a min priority
queue is required. When a new user requests the machine, his/her request is put into the
priority queue.

If each user needs the same amount of time on the machine but people are willing
to pay different amounts for the service, then a priority queue based on the amount of
payment can be maintained. Whenever the machine becomes available, the user paying
the most is selected. This requires a max priority queue. O

Example 5.2: Suppose that we are simulating a large factory. This factory has many
machines and many jobs that require processing on some of the machines. An event is
said to occur whenever a machine completes the processing of a job. When an event
occurs, the job has to be moved to the queue for the next machine (if any) that it needs.
If this queune is empty, the job can be assigned to the machine immediately. Also, a new
job can be scheduled on the machine that has become idle {provided that its queue is not
empty).

To determine the occurrence of events, a priority queue is used. This queue con-
tains the finish time of all jobs that are presently being worked on. The next event
occurs at the least time in the priority queue. So, a min priority queue can be used in this
application. OJ

The simplest way to represent a priority queue is as an unordered linear list.
Regardless of whether this list is represented sequentially or as a chain, the isEmpty
function takes O(1) time; the top () function takes ®(n) time, where n is the number of
elements in the priority queue; a push can be done in O(1) time as it doesn’t matter
where in the list the new element is inseried; and a pop takes ®(n) time as me must first
find the element with max priority and then delete it. As we shall see shortly, when a
max heap is used, the complexity of isEmpty and fop is O(1) and that of push and pop is
Ollog n).

5.6.2 Definition of a Max Heap

In Section 5.2.2, we defined a complete binary tree. In this section we present a special
form of a complete binary tree that is useful in many applications.

Definition: A max (min) tree is a tree in which the key value in each node is no smaller
(larger) than the key values in its children (if any). A max heap is a complete binary tree
that is also a max tree. A min heap is a complete binary tree that is also a min tree. O

Heaps 225

Some examples of max heaps and min heaps are shown in Figures 5.25 and 5.26,
respectively.

i

Figure 5.25: Max heaps

e

Figare 5.26: Min heaps

From the definitions, it follows that the key in the root of a min tree is the smallest
key in the tree, whereas that in the root of a max tree is the largest. When viewed as an
ADT, a max heap is very simple. The basic operations are the same as those for a max
priority queue (ADT 5.2). Since a max heap is a complete binary tree, we represent it
using an array heap.

5.6.3 Insertion into a Max Heap

A max heap with five elements is shown in Figure 5.27(a). When an element is added to
this heap, the resulting six-element heap must have the structure shown in Figure
5.27(b), because a heap is a complete binary tree. To determine the correct place for the
element that is being inserted, we use a bubbling up process that begins at the new node
of the tree and moves toward the root. The element to be inserted bubbles up as far as is
necessary to ensure a max heap following the insertion. If the element to be inserted has

key value 1, it may be inserted as the left child of 2 (i.c., in the new node). If instead, the
key value of the new element is 5, then this cannot be inserted as the left child of 2 (as
otherwise, we will not have a max heap following the insertion). So, the 2 is moved
down to its left child (Figure 5.27(c})), and we determine if placing the 5 at the old posi-
tion of 2 results in a max heap. Since the parent element (20) is at least as large as the
element being inserted (5), it is all right to insert the new element at the position shown
in the figure. Next, suppose that the new element has value 21 rather than 5. In this
case, the 2 moves down to its left child as in Figure 5.27(c). The 21 cannot be inserted
into the old position occupied by the 2, as the parent of this position is smaller than 21,
Hence, the 20 is moved down to its right child and the 21 inserted into the root of the
heap (Figure 5.27(d)).

Figure 5.27: Insertion into a max heap

To implement the insertion strategy just described, we need to go from an element
to its parent. Lemma 5.4 enables us to locate the parent of any element easily. Program
5.13 performs an insertion into a max heap. We assume that the heap is created using the
following C declarations:

#define MAX..ELEMENTS 200 /* maximum heap size+l */
#define HEAP_FULL(n) (n == MAX.ELEMENTS-1)

e

Heaps 227

#define HEAP_EMPTY(n) (!n}
typedef struct {
int key;
/* other fields */
} element;
element heap{MAX ELEMENTS];
int n = 0;

An alternative representation using a dynamically allocated array whose initial
capacity is 1 and doubling array capacity whenever we wish to insert into a full heap is
considered in the exercises.

void push(element item, int *n}
{/* insert item into a max heap of current size *n */
int i;
if (EEAP_FULL{*n)}{
fprintf (stderr, "The heap is full. \n");
exit (EXIT_FAILURE);
}

1 = ++(*n);

while ({(i != 1) && {item.key > heap[i/2].key}) |
heapl[i] = heapli/2];
i /= 2;

1

heap[i] = item;

}

Program 5.13: Insertion into a max heap

Analysis of push: The function push first checks for a full heap. If the heap is not full,
we sef { to the size of the new heap (n + 1). We must now determine the correct position
of item in the heap. We use the while loop to accomplish this task. This follows a path
from the new leaf of the max heap to the root until it either reaches the root or reaches a
position i such that the value in the parent position {/2 is at least as large as the value to
be inserted. Since a heap is a complete binary tree with # elements, it has a height of [
loga(n + 1) |. This means that the while loop is iterated O(log,#) times. Hence, the
complexity of the insertion function is O{logyn). O

5.6.4 Deletion from a Max Heap

When an element is to be deleted from a max heap, it is taken from the root of the heap.
For instance, a deletion from the heap of Figure 5.27(d) results in the removal of the ele-
ment 21, Since the resulting heap has only five elements in it, the binary tree of Figure
5.27(d) needs to be restructured to correspond to a complete binary tree with five ele-
ments. To do this, we remove the element in position 6 (i.e., the element 2). Now we
have the right structure (Figure 5.28(a)), but the root is vacant and the element 2 is not in
the heap. If the 2 is inserted into the root, the resulting binary tree is not a max heap.
The clement at the root should be the largest from among the 2 and the elements in the
left and right children of the root. This element is 20. Tt is moved into the root, thereby
creating a vacancy in position 3. Since this position has no children, the 2 may be
inserted here. The resulting heap is shown in Figure 5.27(a).

(b)

Figure 5.28: Deletion from a heap

Now, suppose we wish to perform another deletion. The 20 is to be deleted. Fol-
lowing the deletion, the heap has the binary free structure shown in Figure 5.28(b). To
get this structure, the 10 is removed from position 5. It cannot be inserted into the root,
as it is not large enough. The 15 moves to the root, and we attempt to insert the 10 into
position 2. This is, however, smaller than the 14 below it. So, the 14 is moved up and the
10 inserted into position 4. The resulting heap is shown in Figure 5.28(c).

Program 5.14 implements this trickle down strategy to delete from a heap.

Analysis of pap: The function pop operates by moving down the heap, comparing and
exchanging parent and child nodes until the heap definition is re-established. Since the
height of a heap with n elements is [loga(n + 1)], the while loop of pop is iterated
O(logyn) times. Hence, the complexity of a deletion is O(log,n). O

Heaps 229

element pop{int *n)
{/* delete element with the highest key from the heap */
int parent, child;
element item, temp;
if (HEAP_EMPTY (*n)) {
fprintf(stderr, "The heap is empty\n");
ex1t (EXIT_FAILURE) ;
}
/* save value of the element with the highest key */
item = heapll];’
/* use last element in heap to adjust heap */
temp = heapl[(*n)——1;
parent = 1;
child = 2;
while {child <= *n} {
/* find the larger child of the current parent */

if (child < *n) && (heap[child] .key <
heaplchild+1l] .key)
child++;

if (temp.key >= heap[child].key) break;
/* move to the next lower level */
heap[parent] = heapl[child];
parent = child;
child *= 2;

}

heap[parent] = temp;

return item;

}

Program 5.14: Deletion from a max heap

EXERCISES

1. Suppose that we have the following key values: 7, 16, 49, 82,5, 31, 6, 2, 44.
{a) Write out the max heap after each value is inserted into the heap.
{b) Write out the min heap after each value is inserted into the heap.

2. Write a structure specification similar to ADT 5.2 for the ADT MirPQ, which
defines a min priority queue.

Compare the run-time performance of max heaps with that of unordered and
ordered linear lists as a representation for priority queunes. For this comparison,
program the max heap push and pop algorithms, as well as algorithms to perform
these tasks on unordered and ordered linear lists that are maintained as sequential
lists in a one-dimensional array. Generate a random sequence of s values and
insert these into the priority queue. Next, perform a random sequence of m inserts
and deletes starting with the initial queve of » values. This sequence is to be gen-
erated so that the next operation in the sequence has an equal chance of being
cither an insert or a delete. Care should be taken so that the sequence does not
cause the priority queue to become empty at any time. Measure the time taken for
the sequence of m operations using both a max heap and an unordered list. Divide
the total time by m and plot the times as a function of n. Make some qualitative
statements about the relative performance of the two representations for a max
priority queue.

The worst-case number of comparisons performed during an insertion into a max
heap can be reduced to O(loglog n} by performing a binary search on the path
from the new leaf to the root. This does not affect the number of data moves
though. Write an insertion algorithm that uses this strategy. Redo Exercise 1
using this insertion algorithm. Based on your experiments, what can you say
about the value of this strategy over the one used in Program 5.137

Write a C function that changes the priority of an arbitrary element in a max heap.
The resulting heap must satisfy the max heap definition. What is the computing
time of your function?

Write a C function that deletes an arbitrary element from a max heap (the deleted
element may be anywhere in the heap). The resulting heap must satisfy the max
heap definition. What is the computing time of your function? (Hint: Change the
priority of the element to one greater than that of the root, use the change priority
function of Exercise 3, and then pop.)

Write a C function that searches for an arbitrary element in a max heap. What is
the computing time of your function?

Write insertion and deletion functions for a max heap represented as a linked
binary tree. Assume that each node has a parent field as well as the usual left
child, right child, and data fields.

§ [Programming project] Write a user-friendly, menu-driven program that allows
the user to perform the following operations on min heaps.

{a) create a min heap

(b) remove the key' with the lowest value

(c} change the priority of an arbitrary element
(d) insert an element into the heap.

Binary Search Trees 231

10. Develop C functions to insert and delete into/from a max heap under the assump-
tions that a dynamically allocate array is used, the initil capacity of this array is 1,
and array doubling is done whenever we are to insert into a max heap that is full.
Test your functions.

5.7 BINARY SEARCH TREES

5.7.1 Definition

A dictionary is a collection of pairs, each pair has a key and an associated item.
Although naturaily occurring dictionaries have several pairs that have the same key, we
make the assumption here that no two pairs have the same key. The data structure, binary
scarch tree, that we study in this section is easily extended to accommodate dictionaries
in which several pairs have the same key. ADT 5.3 gives the specification of a diction-

ary.

ADT Dictionary is
objects: a collection of n > 0 pairs, each pair has a key and an associated item
functions:
for all 4 € Dictionary, item € Item, k € Key, n € integer

Dictionary Create(max_size) = create an empty dictionary.

Boolean IsEmpty(d, n) = if (n>0) return TRUE

else return FALSE

return item with key £,

return NULL if no surh element.
Element Delete(d, k) delete and return item (if any) with key k;
void Insert(d, item, k) = insert item with key k into d.

Element Search(d, k)

ADT 5.3: Abstract data type dictionarv

A binary search tree has a better performance than any of the data structures stu-
died so far when the functions to be performed are search, insert, and delete. In fact,
with a binary search tree, these functions can be performed both by key value and by
rank (i.e., find the item with key k: find the fifth smallest item; delete the item with key k;
delete the fifth smallest item; insert an item and determine its rank; and so on).

Definition: A binary search tree is a binary tree. It may be emp:y. 11 it is not empty
then it satisfies the following properties:

(1) Each node has exactly one key and the keys in the tree are distinct.

(2) The keys (if any) in the left subtree are smaller than the key in the root.
(3) The keys (if any) in the right subtree are larger than the key in the root.
(4) The left and right subtrees are also binary search trees. O

There is some redundancy in this definition. Properties (2), (3), and (4) together
imply that the keys must be distinct. So, property (1) can be replaced by the property:
The root has a key.

Some examples of binary trees in which the nodes have distinct keys are shown in
Figure 5.29. In this figure, only the key component of each dictionary pair is shown.
The tree of Figure 5.29(a) is not a binary search tree, despite the fact that it satisfies pro-
perties (1), (2), and (3). The right subtree fails to satisfy property (4). This subtree is not
a binary search tree, as its right subtree has a key value (22) that is smailer than that in
the subtree’s root (25). The binary trees of Figures 5.29(b) and (c) are binary search
trees.

) W @
ONERO OO
H @ ® @ ONC

(@) (b) (c)

Figure 5.29: Binary trees

5.7.2 Searching a Binary Search Tree

Since the definition of a binary search tree is recursive, it is easiest to describe a recur-
sive search method. Suppose we wish to search for a node whose key is k. We begin at
the root of the binary search tree. If the root is NULL, the search tree contains no nodes
and the search is unsuccessful. Otherwise, we compare k with the key in root, If &
equals the root’s key, then the search terminates successfully. If & is less than root’s key,
then no element in the right subtree can have a key value equal to k. Therefore, we

Binary Search Trees 233

search the left subtree of the root. If k is larger than root’s key value, we search the right
subtree of the root. The function search (Program 5.15) recursively searches the sub-
trees. We assume that the data field of a node is of type element and that the type ele-
ment has two components key and itern whose types are int and iType, respectively.

element* search{treePointer root, int key)
{/* return a pointer to the element whose key is k, if
there is no such element, return NULL. */
if (!root) return NULL;
if (k == root—data.key) return &{root—data);
if (k < roct-»data.key)
return searchircot—leftChild, k};
return search(root—rightChild, k);

Program 5.15: Recursive search of a binary search tree

We can easily replace the recursive search function with a comparable iterative
one. The function iterSearch (Program 5.16) accomplishes this by replacing the recur-
sion with a while loop.

element* iterSearch(treePointer tree, int k)
{/* return a pointer to the element whose key is k, if
there is no such element, return NULL. */
while (tree) {
if (k == tree-—sdata.key) return &{(tree—data);
if (k < tree—data.key)
tree = tree—leftChild;
else
tree

1l

tree—rightChild;

}
return NULL;

I

Program 5.16: lierative search of a binary search tree

Analysis of search and iterSearch: If h is the height of the binary search tree, then we
can perform the search using either search or iterSearch in O(h). However, search has

an additional stack space requirement which is O(h). O

5.7.3 Inserting into a Binary Search Tree

To insert a dictionary pair whose key is k, we must first verify that the key is different
from those of existing pairs. To do this we search the tree. If the search is unsuccessful,
then we insert the pair at the point the search terminated. For instance, to insert a pair
with key 80 into the tree of Figure 5.29(b) (only keys are shown), we first search the tree
for 80. This search terminates unsuccessfully, and the last node examined has key 40.
We insert the new pair as the right child of this node. The resulting search tree is shown
in Figure 5.29(a). Figure 5.30(b} shows the result of inserting the key 35 into the search
tree of Figure 5.30(a). This strategy is implemented by insert (Program 5.17). This func-
tion vses the function modifiedSearch which is a slightly modified version of function
iterSearch (Program 5.16), which searches the binary search tree *node for the key k. If
the tree is empty or if k is present, it returns NULL. Otherwise, it returns a pointer to the
last node of the tree that was encountered during the search. The new pair is to be
inserted as a child of this node.

©)
ONRO ONRO
© OO0

(a) Insert 80 (b) Insert 35

Figure 5.30: Inserting into a binary search tree

Analysis of insert: The time required to search the tree for k is O(h) where £ is its
height. The remainder of the algorithm takes &(1) time. So, the overall time needed by
insertis O(h). O

Binary Search Trees 235

void insert(treePointer *node, int k, iType theltem)
{/* if k is in the tree pointed at by node do nothing;

otherwise add a new node with data = (k, theltem) =/
treePointer ptr, temp = modifiedSearch(*node, k);
if (temp || !'{(*node)) {

/* kK is not in the tree */

MALLOC (ptr, sizecf(*ptr));

ptr—data.key = k;

ptr—data.item = theltem;

ptr—leftChild = ptr—rightChild = NULL;

if (*nede) /* insert as child of temp */
if (k < temp—data.key) temp—leftlhild = ptr;
else temp—orightChild = ptr;

else *node = ptr;

}

Program 5.17: Inserting a dictionary pair into a binary search tree

5.74 Deletion from a Binary Search Tree

Deletion of a leaf is quite easy. For example, to delete 35 from the tree of Figure
5.30(b), the left-child field of its parent is set to 0 (NULL) and the node freed. This gives
us the tree of Figure 5.30(a). To delete the 80 from this tree, the right-child field of 40 is
set to 0, obtaining the tree of Figure 5.29(b), and the node containing 80 is freed.

The deletion of a nonleaf that has only one child is also easy. The node containing
the dictionary pair to be deleted is freed, and its single-child takes the place of the freed
node. So, lo delete the 5 from the tree of Figure 5.30(a), we simply change the pointer
from the parent node (i.e., the node containing 30) to the single-child node (i.e., the node
containing 2).

When the pair to be deleted is in a nonleaf node that has two children, the pair to
be deleted is replaced by either the largest pair in its left subtree or the smallest one in its
right subtree. Then we proceed to delete this replacing pair from the subtree from which
it was taken. For instance, if we wish to delete the pair with key 30 from the tree of Fig-
ure 5.30(a), then we replace it by either the largest pair, the one with key 5, in its left
subtree or the smallest pair, the one with key 40, in its right subtree. Suppose we opt for
the largest pair in the left subtree. The pair with key 5 is moved into the root, and the
tree of Figure 5.31(a) is obtained. Now we must delete the second 5. Since the node

with the second 5 has only one child, the pointer from its parent is changed to point to
this child. The tree of Fionre 5 11(h) i< ahtained (ne mav verifv that recardlace of

whether the replacing pair is the largest in the left subtree or the smallest in the right
subtree, it is originally in a node with a degree of at most one. So, deleting it from this
node is quite easy. We leave the writing of the deletion function as an exercise. It
should be evident that a deletion can be performed in O(f) time if the search tree has a
height of A.

(a) {b)

Figure 5.31: Deletion from a binary search tree

5.7.5 Joining and Spiitting Binary Trees

Although search, insert, and delete are the operations most frequently performed on a
binary search tree, the following additional operations are useful in certain applications:

(@)

(b

(c)

threeWayJoin (small,mid,big): This creates a binary search tree consisting of the
pairs initially in the binary search trees small and big, as well as the pair mid. It is
assumed that each key in small is smaller than mid . key and that each key in big is
greater than mid . key. Following the join, both smail and big are empty.

twoWayJoin (small,big): This joins the two binary search trees small and big to
obtain a single binary search tree that contains all the pairs originally in small and
big. It is assumed that all keys of small are smaller than all keys of big and that
following the join both small and big are empty.

split (theTree,k,small,mid,big): The binary search tree theTree is split into three
parts: small is a binary search tree that contains all pairs of theTree that have key
less than k; mid is the pair (if any) in theTree whose key is k; and big is a binary
search tree that contains all pairs of theTree that have key larger than k. Following
the split operation theTree is empty, When theTree has no pair whose key is k,
mid.key is set to —1 (this assumes that —1 is not a valid key for a dictionary pair).

Binary Search Trees 237

A three-way join operation is particularly casy to perform. We simply obtain a
new node and set its data field to mid, its left-child pointer to small, and its right-child
pointer to big. This new node is the root of the binary search tree that was to be created.
Finally, small and big are set to NULL. The time taken for this operation is O(1), and the
height of the new tree is max{keight (small), height (big)}} + 1.

Consider the two-way join operation. If either smail or big is empty, the result is
the other tree. When neither is empty, we may first delete from small the pair mid with
the largest key. Let the resulting binary search tree be small”. To complete the opera-
tion, we perform the three-way join operation threeWayJoin (small”,mid.big). The
overall time required to perform the two-way join operation is O(height (small)), and the
height of the resulting tree is max{height (small”), height (big)} + 1. The run time can
be made O(min{keight (small), height (big)}) if we retain with each tree its height. Then
we delete the pair with the largest key from small if the height of small is no more than
that of big; otherwise, we delete from big the pair with the smallest key. This is fol-
lowed by a three-way join operation.

To perform a split, we first make the following observation about splitting at the
root (i.e., when k = theTree —data . key). In this case, small is the left subtree of thelree,
mid is the pair in the Toot, and big is the right subtree of theTree. If k is smaller than the
key at the root, then the root together with its right subtree is to be in big. When £ is
larger than the key at the root, the root together with its left subtree is to be in small.
Using these observations, we can perform a split by moving down the search tree thelree
searching for a pair with key k. As we move down, we construct the two search trees
small and big. The function to split theTree given in Program 5.18. To simplify the
code, we begin with two header nodes sHead and bHead for small and big, respectively.
small is grown as the right subtree of sHead; big is grown as the left subtree of bHead. s
(b) points to the node of sHead (bHead) at which further subtrees of theTree that are to
be part of small (big) may be attached. Attaching a subtree to small (big) is done as the
right (left) child of s (b).

Analysis of split: The while loop maintains the invariant that all keys in the subtree
with root currentNode are larger than those in the tree rooted at sHead and smaller than
those in the tree rooted at bHead. The correciness of the function is easy to establish,
and its complexity is seen to be O(height (theTree)). One may venfy that neither small
nor big has a height larger than that of theTree. O

5.7.6 Height of a Binary Search Tree

Unless care is taken, the height of a binary search tree with n elements can become as
large as n. This is the case, for instance, when Program 5.17 is used to insert the keys [1,
2.3, ... nl],in this order, into an initially empty binary search tree. It can, however, be
shown that when insertions and deletions are made at random using the functions given
here, the height of the binary search tree is O(log n) on the average.

void split(nodePointer *theTree, int k, nodePointer *small,
element *mid, nodePointer *big)
{/* split the binary search tree with respect to key k */
if (!'theTree) {(*small = *big = 0;
(*mid) .key = —-1; return;)} /* empty tree */
nodePointer sHead, bHead, s, b, currentNode;
/* create header nodes for small and big */
MALLOC (sHead, sizeof {*sHead)};
MALLOC {(bHead, sizeof (*bHead)):;
5 = sHead; b = bHead;

/* do the split */
currentNode = *thelree;
while {currentNode)
if {k < currentNode—data.key) {/* add to big */
b—leftChild = currentNode;
b = currentNode; currentNode = currentNode—leftChild;
}
else if (k > currentNode—data.key) {/* add tc small */
s—rightChild = currentNocde;
5 = currentNode; currentNode = currentNode—rightChild,
}
else {/* split at currentNode */
s—rightChild = currentNode—leftChild;
b—leftChild = currentNode-srightChild;
*small = sHead—rightChild; free(sHead);
*big = bHead—leftChild; free(bHead);
(*mid) .item = currentNode—data.item;
(*mid) .key = currentNode—data.key;
free(currentNode) ;
return;
'}
/* no pair with key k */
s—rightChild = bh—leftChild = 0;
*small = sHead—rightChild; free{sHead);
*big = bHead—leftChild; free{(bHead);
(*mid) .key = -1;
return;

Program 5.18 Splitting a binary search tree

Binary Search Trees 239

Search trees with a worst-case height of O(log) are called balanced search trees.

Balanced search trees that permit searches, inserts, and deletes to be performed in O(h)
time exist. Most notable among these are AVL, red/black, 2-3, 2-3-4, B, and Bt trees,
These are discussed in Chapters 10 and 11,

EXERCISES

1,

Write a C function to delete the element with key k from a binary search tree.
What is the time complexity of your function?

Write a program to start with an initially empty binary search tree and make » ran-
dom insertions. Use a uniform random number generator to obtain the valuves to be
inserted. Measure the height of the resuiting binary search tree and divide this
height by log,r. Do this for 2 = 100, 500, 1000, 2000, 3000, - - -, 10,000. Plot the
ratio height /log,n as a function of n. The ratio should be approximately constant
(around 2). Verify that this is so.

Suppose that each node in a binary search tree also has the field lefiSize as
described in the text. Write a function to insert a pair into such a binary search
tree. The complexity of your function should be O(k), where 4 is the height of the
search tree. Show that this is the case.

Do Exercise 3, but this time write a function to delete the pair with the th smallest
key in the binary search tree.

Write a C function that implements the three-way join operation in O(1) time. fog _

Write a C function that implements the two-way join operation in O(h) time,
where £ is the height of one of the two trees being joined.

Any algorithm that merges together two sorted lists of size n and m, respectively,
must make at feast n + m ~ | comparisons in the worst case. What implications
does this result have on the time complexity of any comparison-based algorithm
that combines two binary search trees that have n and m pairs, respectively?

In Chapter 7, we shall see that every comparison-based algorithm to sort n ele-
ments must make Q(nlog #) comparisons in the worst case, What implications
does this result have on the complexity of initializing a binary search tree with n
pairs?

Notice that a binary search tree can be used to implement a priority queue.

(a) Write a C functions for a max priority queue that represents the priority
queue as a binary search tree. Your codes for top, pop and pusk should have
complexity O(h), where h is the height of the search tree. Since 4 is
O(.0g n) on average, we can perform each these priority queue operations in
average time O(log »).

(b) Compare the actual performance of heaps and binary search trees as data
structures for priority queues. For this comparison, generate random

sequences of delete max and insert operations and measure the total time
taken for each sequence by each of these data structures.

10. Assume that we change the definition of a binary search tree so that equal keys are
permitted and that we add a count field to the node structure.

(a) Rewrite insertNode so that it increments the count field when a plural key is
found. Otherwise, a new node is created.

(b) Rewrite delete so that it decrements the count field when the key is found.
The node is eliminated only if its count 15 0.

11. Write the C code for the function modifiedSearch that is used in Program 5.17.

12. Obtain a recursive version of insertNode. Which of the two versions is more
efficient? Why?

13. Write a recursive C function to delete a key from a binary search tree. What is the
time and space complexity of your function?

14. Obtain an iterative C function to delete a key from a binary search tree. The space
complexity of your function should be O(1). Show that this is the case. What is
the time complexity of your function?

15. Assume that a binary search tree is represented as a threaded binary search tree.
Write functions to search, insert, and delete.

58 SELECTION TREES

5.8.1 Introduction

Suppose we have k ordered sequences, called runs, that are to be merged into a single
ordered sequence. Each run consists of some records and is in nondecreasing order of a
designated field called the key. Let n be the number of records in all & runs together.
The merging task can be accomplished by repeatedly outputting the record with the
smallest key. The smallest has to be found from k possibilities, and it could be the lead-
ing record in any of the & runs. The most direct way to merge k runs is to make & — 1
comparisens to determine the next record to output. For k > 2, we can achieve a reduc-
tion in the number of comparisens needed to find the next smallest element by using the
selection tree data structure. There are two kinds of selection trees: winner trees and
loser trees.

Selection Trees 241

5.8.2 Winner Trees

A winner tree is a complete binary tree in which each node represents the smaller of its
two children. Thus, the root node represents the smallest node in the tree. Figure 5.32
illustrates a winner tree for the case k= 8.

15 20 20 15 15 11 95 18
16 38 30 25 50 16 99 20
28

runl run2 mn3 rnd4 run5 nmé rmn7 tun8

Figure 5.32: Winner tree for k = 8, showing the first three keys in each of the eight runs

The construction of this winner tree may be compared to the playing of a tourna-
ment in which the winner is the record with the smaller key. Then, each nonleaf node in
the tree represents the winner of a tournament, and the root node represents the overall
winner, or the smallest key. Each leaf node represents the first record in the correspond-
ing run. Since the records being merged are generally large, each node will contain only
a pointer to the record it represents. Thus, the root node contains a pointer to the first
record in run 4.

A winner trec may be represented using the sequential allocation scheme for

binary trees that results from Lemma 5.4. The number above each node in Figure 5.32 is
the address of the node in this sequential representation. The record pointed to by the
root has the smallest key and so may be output. Now, the next record from run 4 enters
the winner tree. It has a key value of 15. To restructure the iree, the tournament has fo
be replayed only along the path from node 11 to the root. Thus, the winner from nodes
10 and 11 is again node 11 {15 < 20). The winner from nodes 4 and 5 is node 4 (9 < 15).
The winner from 2 and 3 is node 3 (8 < 9). The new tree is shown in Figure 5.33. The
tournament is played between sibling nodes and the result put in the parent node.
Lemma 5.4 may be used to compute the address of sibling and parent nodes efficiently.
Each new comparison takes place at the next higher level in the tree.

15 20 20 25 15 il a5 18
i6 38 30 28 50 i6 99 20

ronl mn2 rmn3 mn4 rmun5 rmn6é mun7 rund

Figure 5.33: Winner tree of Figure 5.32 after one record has been output and the tree
restructured (nodes that were changed are shaded)

Selection Trees 243

Analysis of merging runs using winner trees: The number of levels in the tree is
[logy(k + 1)]. So, the time to restructure the tree is O(logsk). The tree has to be re-
structured each time a record is merged into the output file. Hence, the time required to
merge all n records is Ofr logok). The time required to set up the selection tree the first
time is O(k). Thus, the total time needed to merge the & runs is O(n logsk). O

5.8.3 Loser Trees

After the record with the smallest key value is output, the winner tree of Figure 5.32 is 1o
be restructured. Since the record with the smallest key value is in tun 4, this re-
structuring involves inserting the next record from this run into the tree. The next record
has key value 15. Tournaments are played between sibling nodes along the path from
node 11 to the root. Since these sibling nodes represent the losers of tournaments played
earlier, we can simplify the restructuring process by placing in each nonleaf node a
pointer to the record that loses the tournament rather than to the winner of the tourna-
ment. A selection tree in which each nonleaf node retains a pointer to the loser is called
a loser tree. Figure 5.34 shows the loser tree that corresponds to the winner tree of Fig-
ure 5.32. For convenience, each node contains the key value of a record rather than a
pointer to the record represented. The leaf nodes represent the first record in each run.
An additional node, node 0, has been added to represent the overalt winner of the tourna-
ment. Following the output of the overall winner, the tree is restructured by playing
tournaments along the path from node 11 to node 1. The records with which these tour-
naments are to be played are readily available from the parent nodes. As a result, sibling
nodes along the path from 11 to 1 are not accessed.

EXERCISES

Write abstract data type specifications for winner and loser trees,

2. Write a function to construct a winner tree for k records. Assume that k is a power
of 2. Each node at which a tournament is played should store only a pointer to the
winner. Show that this construction can be carried out in time O(k).

3. Do Exercise 2 for the case when & is not restricted to being a power of 2.

4. Write a function to construct a loser tree for k records, Use position 0 of your
loser-tree array to store a pointer to the overall winner, Show that this construc-
tion can be carried out in time O(k). Assume that £ is a power of 2.

5. Do Exercise 4 for the case when £ is not restricted to being a power of 2.

6. Write a function, using a tree of losers, to carry out a k-way merge of k runs, k 2 2.
Assume the existence of a function to initialize a loser tree in linear time. Show
that if there are n>k records in all & runs together, then the computing time is

O(nlog, k).

overall
winner

Figure 5.34: Loser tree corresponding to winner tree of Figure 5.32

7. Do the previous exercise for the case in which a tree of winners is used. Assume
the existence of a function to initialize a winner tree in linear time.

8. Compare the performance of your functions for the preceding two exercises for the
case k = 8. Generate eight runs of data, each having 100 records. Use a random
number generator for this (the keys obtained from the random number generator
will need to be sorted before the merge can begin). Measure and compare the time
taken to merge the eight runs using the two strategies.

59 FORESTS

Definition: A forest is a set of n > 0 disjoint trees. O

A three-tree forest is shown in Figure 5.35. The concept of a forest is very close to that
of a tree because if we remove the root of a tree, we obtain a forest. For example,
removing the root of any binary tree produces a forest of two trees. In this section, we
briefly consider several forest operations, including transforming a forest into a binary
tree and forest traversals. In the next section, we use forests to represent disjoint sets,

Forests 245

Figure 5,35: Three-tree forest

5.9.1 Transforming a Forest into a Binary Tree

To transform a forest into a single binary tree, we first obtain the binary tree representa-
tion of each of the trees in the forest and then link these binary trees together through the
rightChild field of the oot nodes. Using this transformation, the forest of Figure 5.35
becomes the binary tree of Figure 5.36.

Figure 5.36: Binary tree representation of forest of Figure 5.35

We can define this transformation in a formal way as follows:

Definition: If T, , - - -, T, is a forest of trees, then the binary tree corresponding to this
forest, denoted by B(Ty, ---, T,),

(1) isemptyifn=90
(2} has root equal to root (7)); has left subtree equal to B(T;.T)3, -+, T1y), where

Ty, ---, T, are the subtrees of root(T), and has right subtree B(T», -, T,).
a

5.9.2 Forest Traversals

Preorder and inorder traversals of the corresponding binary tree T of a forest F have a
natural correspondence to traversals on F. Preorder traversal of T is equivalent to visit-
ing the nodes of F in forest preorder, which is defined as follows:

(1) If Fis empty then return.

(2) Visit the root of the first tree of F.

(3) Traverse the subtrees of the first tree in forest preorder.
(4) Traverse the remaining trees of F in forest preorder.

Inorder traversal of 1" is equivalent to visiting the nodes of F in forest inorder, which is
defined as follows:

(1) If Fis empty then return.
(2) Traverse the subtrees of the first tree in forest inorder.
{3) Visit the root of the first tree.

(4) Traverse the remaining trees in forest inorder.

The proofs that preorder and inorder traversals on the corresponding binary tree
are the same as preorder and inorder traversals on the forest are left as exercises. There
is no natural analog for postorder traversal of the corresponding binary tree of a forest.
Nevertheless, we can define the postorder traversal of a forest as follows:

(1) If Fis empty then return.

(2) Traverse the subtrees of the first tree of F in forest postorder.
(3) Traverse the remaining trees of F in forest postorder.

{4) Visit the root of the first tree of F.

In a level-order traversal of a forest, nodes are visited by level, beginning with the
roots of each tree in the forest. Within each level, nodes are visited from left to right.
One may verify that the level-order traversal of a forest and that of its associated binary
tree do not necessarily yield the same result.

Representation of Disjoint Sets 247

EXERCISES

1. Define the inverse transformation of the one that creates the associated binary tree
from a forest. Are these transformations unique?

2. Prove that the preorder traversal of a forest and the preorder traversal of its associ-
ated binary tree give the same result.

3. Prove that the inorder traversal of a forest and the inorder traversal of its associ-
ated binary tree give the same result,

4. Prove that the postorder traversal of a forest and that of its corresponding binary
tree do not necessarily yield the same result.

5. Prove that the level-order traversal of a forest and that of its corresponding binary
tree do not necessarily yield the same result.

6. Write a nonrecursive function to traverse the associated binary tree of a forest in
forest postorder. What are the time and space complexities of your function?

7. Do the preceding exercise for the case of forest level-order traversal.

510 REPRESENTATION OF DISJOINT SETS

5.10.1 Introduction

In this section, we study the use of trees in the representation of sets. For simplicity, we
assume that the elements of the sets are the numbers 0, 1, 2, -- -, n—1. In practice, these
numbers might be indices into a symbol table that stores the actual names of the ele-
ments. We also assume that the sets being represented are pairwise disjoint, that is, if S;
and §; arc two sets and i # j, then there is no element that is in both S; and §;. For exam-
ple, if we have 10 elements numbered O through 9, we may partition them into three dis-
joint sets, S| = {0, 6,7, 8}, 5, = {1, 4, 9}, and §; = {2, 3, 5}. Figure 5.37 shows one .
possible representation for these sets. Notice that for each set we have linked the nodes
from the children to the parent, rather than our usual method of linking from the parent
to the children. The reason for this change in linkage will become apparent when we
discuss the implementation of set operations.
The minimal operations that we wish to perform on these sets are:

(1) Disjoint set union. If §; and §; are two disjoint sets, then their union §; U §; = {all
elements, x, such that x is in §; or §;}. Thus, §; US> = {0,6,7,8, 1, 4,9}. Since
we have assumed that all sets are disjoint, following the union of §; and §; we can
assume that the scts §; and §; no longer exist independently. That is, we replace
them by §; U §;.

(2) Find(i). Find the set containing the element, i. For example, 3 is in set §3 and 8 is
in set §,.

o 4) 2
SNOROENO! %) @/%
A

5, AP

Figure 5.37: Possible tree representation of sets

5.10.2 Union And Find Operations

Let us consider the union operation first. Suppose that we wish to obtain the union of §,
and §,. Since we have linked the nodes from children to parent, we simply make one of
the trees a subtree of the other. §; U §; could have either of the representations of Fig-
ure 5.38.

S1usS, or

Figure 5.38: Possible representation of §; U S,

To implement the set union operation, we simply set the parent field of one of the
roots to the other root. We can accomplish this easily if, with each set name, we keep a
pointer to the root of the tree representing that set. If, in addition, each root has a pointer
to the set name, we can find which set an element is in by following the parent links to
the root of its tree and then returning the pointer to the set name. Figure 5.39 shows this
representation of §, §5, and 5;.

To simplify the discussion of the union and find algorithms, we will ignore the set
names and identity the sets by the roots of the trees representing them. For example,
rather than using the set name § we refer to this set as 0. The transition to set names is
easy. We assume that a table, name [], holds the set names. If J is an element in a tree

Representation of Disjoint Sets 249

Set
Name Pointer

5y

Sz

83

Figure 5.39: Data representation of 5y, 53, and 55

with root j, and j has a pointer to entry k in the set name table, then the set name is just
namelk].

Since the nodes in the trees are numbered 0 through r» — 1 we can use the node’s
number as an index. This means that each node needs only one field, the index of its
parent, to link to its parent. Thus, the only data structure that we need is an array, int
parent[MAX_FELEMENTS], where MAX_ELEMENTS is the maximum number of ele-
ments. Figure 5,40 shows this representation of the sets, §;, 55, and §;. Notice that root
nodes have a parent of -1,

i (O] | 110 ; (2] | 131 | 141 | [5] | [6] | [7) | [8] | [9]
parent | -1 | 4 -1 (2 -1 |2 0 0 0 4

Figure 5.40: Array representation of $;, 5, and 53

We can now find element / by simply following the parent values starting at { and
continuing until we reach a negative parent parent value. For example, to find 5, we start
at 5, and then move to 5°s parent, 2. Since this node has a negative parent valoe we have
reached the root. The operation union(i,j) is equally simple. We pass in two trees with
roots i and j. Assuming that we adopt the convention that the first tree becomes a subtree
of the second, the statement parent [i] = j accomplishes the union. Program 5.19 imple-
ments the simple union and find operations as just discussed.

int simpleFind(int 1)

{
for(; parent[i] »>= 0; 1 = parentfi]}
return i;

}

vold simpleUnion(int i, int 7)

{
parent[i] = j;

1

Program 5.19: Initial attempt at union-find functions

Analysis of simpleUnion1 and simpleFind1: Although simpleUnion and simpleFind are
easy to implement, their performance characteristics are not very good. For instance, if
we start with p elements, each in a set of its own, that is, §; = {{}, 0 < i < p, then the ini-
tial configuratior is a forest with p nodes and parent[i] = -1, 0 < i < p. Now let us pro-
cess the following sequence of union-find operations:

union(0, 1), find(0)
union(1, 2), find(0)

union(n—2, n—1), find(0)

This sequence produces the degenerate tree of Figure 5.41. Since the time taken
for a union is constant, we can process all the n — 1 unions in time O(r). However, for
each find, we must follow a chain of parent links from 0 to the root. If the element is at
level i, then the time required to find its root is O(). Hence, the total time needed to pro-
cess the n — 1 finds is:

Y i=0(n?)0
i=2
By avoiding the creation of degenerate trees, we can attain far more efficient
implementations of the union and find operations. We accomplish this by adopting the

following Weighting rule for unionfi, j).

Definition: Weighting rule for union(i, j). If the number of nodes in tree / is less than the
number in tree j then make j the parent of i; otherwise make i the parent of j. O

Representation of Disjoint Sets 251

Figure 5.41: Degenerate tree

When we use this rule on the sequence of set unions described above, we obtain
the trees of Figure 5.42. To implement the weighting rule, we need to know how many
nodes there are in every tree. To do this easily, we maintain a count field in the root of
every tree. If i is a root node, then count[i] equals the number of nodes in that tree.
Since atl nodes but the roots of trees have a nonnegative number in the parent field, we
can maintain the count in the parent field of the roots as a negative number. When we
incorporate the weighting rule, the union operation takes the form given in weightedUn-
ion (Program 5.20). Remember that the arguments passed into weightedUnion must be
roots of trees.

Lemma 5.5: Let T be a tree with n nodes created as a result of weightedUnion. No node
in T has level greater than | log,n | + 1.

Proof: The lemma is clearly true for n = 1. Assume that it is true for all trees with i
nodes, i < n — 1. We show that it is also true for i = n. Let T be a tree with n nodes
created by weightedUnion. Consider the last union operation performed, union(k,j). Let
m be the number of nodes in tree j and n—m, the number of nodes in k. Without loss of
generality, we may assume that 1 €£m < n/ 2. Then the maximum level of any node in T
is either the same as k or is one more than in j. If the former is the case, then the max-
imum level in Tis < | loga(n—m) | + 1< | logon | + 1. If the latter is the case, then the
maximum level is < | logom | +2< [logan/2 | +2< [logen [+1.0

Union (0,3) Union (0O,n-1)

Figure 5.42: Trees obtained using the weighting rule

void weightedUnion{int i, int 7)

{/* union the sets with roots i and j, i != j, using
the weighting rule. parent[i] = —count[i] and
parent[j] = —count(j] */

int temp = parent[i] + parent[j];
if {parent([i] > parent[F]) {

parent[i] = j; /* make j the new root */
parent[j] = temp;

1

else {
parent{j} = i; /*make i the new root */
parent[i] = temp;

t

Program 5.20: Union function using weighting rule

Representation of Disjoint Sets 253

Example 5.3 shows that the bound of Lemma 5.5 is achievable for some sequence
of unions.

Example 5.3: Consider the behavior of weightedUnion on the following sequence of
unions starting from the initial configuration of parent[i] = —count[i1=—-1,0<i<n=
2%

union(0, 1) wunion(2, 3) union{4,3) union(6, 7)
union{0, 2) union(4, 6} union(0, 4)

When the sequence of unions is performed by columns (i.e., top to bottom within a
column with column 1 first, column 2 next, and so on), the trees of Figure 5.43 are
obtained. As is evident from this example, in the general case, the maximum level can
be | logym |+ 1 if the tree has m nodes. O

From Lemma 5.5, it follows that the time to process a find is O(log m) if there are
m elements in a tree. If an intermixed sequence of u — 1 union and f find operations is to
be processed, the time becomes O(u + f log u), as no tree has more than « nodes in it.
Of course, we need O(n) additional time to initialize the n-tree forest.

Surprisingly, further improvement is possible. This time the modification will be
made in the find algorithm using the collapsing rule.

Definition [Collapsing rule]: If jis a node on the path from i to its root and parent [i } +
root{i}, then set parent [j] to reot (i). O

Function collapsingFind (Program 5.21) incorporates the collapsing rule.

Example 5.4: Consider the tree created by function weighredUnion on the sequence of
unions of Example 5.5. Now process the following eight finds:

Jind(7), find(7), - - -, find(7)

If simpleFind is used, each find(7) requires going up three parent link fields for a total of
24 moves to process all eight finds. When collapsingFind is used, the first find(7)
requires going up three links and then resetting two links. Note that even though only
two parent links need to be reset, function collapsingFind will actually reset three (the
parent of 4 is reset to 0). Each of the remaining seven finds requires going up only one
link field. The total cost is now only 13 moves, O

Analysis of weightedUnion and collapsingFind: Use of the collapsing rule roughly
doubles the time for an individual find. However, it reduces the worst-case time over a
sequence of finds. The worst-case complexity of processing a sequence of unions and
finds using weightedUnion and collapsingFind is stated in Lemma 5.6, This lemma

U ED R D
ONORONONONONO @

(a) Initial height-1 trees

r
1

)
|
i

[-2] 2] 2] (2]

(b) Height-2 trees following Union (0,1), (2,3), (4,3), and (6,7)

(4] (4]

(c) Height-3 trees following Union (0,2) and (4,6)

(8]

(d) Height-4 tree following Union (0,4)

Figure 5.43: Trees achieving worst case bound

Representation of Disjoint Sets 255

int collapsingFind{int i)
{/* find the root of the tree containing element i. Use the
collapsing rule to collapse all nodes from i to root */

int root, trail, lead;

for (roct = i; parent{rocot] >= 0; root = parentirocot])
H

for (trail = i; trail != root; trail = lead) {
lead = parent[trail};
parent [trail] = root;

}
return root;

}

Program 5.21: Collapsing rule

makes use of a function a(p,q) that is related to a functional inverse of Ackermann’s
function A (i,7). These functions are defined as follows:

A(LjH=2, forj=1
A DN=AG-1,2) foriz?2
A N=AG-1AGj-1) forij=2

alp,g)=min{z 211 A(z,|p/g]) > logg}, p2g21

The function A (i,j) is a very rapidly growing function. Consequently, o grows
very slowly as p and ¢ are increased. In fact, since A(3,1) = 16, a(p,g) <3 forg< 216 =
65,536 and p = g. Since A(4,1) is a very large number and in our application g will be
the number, n, of set clements and p will be n + f (f is the number of finds), o(p,q) < 4
for all practical purposes. O

Lemma 5.6 [Tarjan and Van Leeuwen]: Assume that we start with a forest of trees,
each having one node. Let T(f,«) be the maximum time required to process any inter-
mixed sequence of f finds and u unions. Assume that 4 > n/2. Then

kiin+faf+nn)sT(f,u)<ky(n + folf +n,n))
for some positive constants &, and k,. O
The requirement that # = r/2 in Lemma 5.6, is really not significant, as when u <

n/2, some elements are involved in no union operation. These elements remain in sin-
gleton sets throughout the sequence of union and find operations and can be eliminated

from consideration, as find operations that involve these can be done in O{1) time each.
Even though the function o(f,u) is a very slowly growing function, the complexity of
our solution to the set representation problem is not linear in the number of unions and
finds. The space requirements are one node for each element.

In the exercises, we explore alternatives to the weight rule and the collapsing rule
that preserve the time bounds of Lemma 5.6.

5.10.3 Application to Equivalence Classes

Consider the equivalence pairs processing problem of Section 4.6. The equivalence
classes to be generated may be regarded as sets. These sets are disjoint, as no polygon
can be in twe equivalence classes. Initially, all r polygons are in an equivalence class of
their own; thus parent [i] = -1,0 <i < n. If an equivalence pair, i = j, is to be processed,
we must first determine the sets containing i and j. If these are different, then the two sets
are to be replaced by their union. If the two sets are the same, then nothing is to be done,
as the relation i = j is redundant; i and j are already in the same equivalence class. To
process each equivalence pair we need to perform two finds and at most one union.
Thus, if we have n polygons and m equivalence pairs, we need to spend O(n) time to set
up the initial n-tree forest, and then we need to process 2m finds and at most
min{n — 1, m} unions. (Note that after n — 1 unions, all n polygons will be in the same
equivalence class and no more unions can be performed.) If we use weightedUnion and
collapsingFind, the total time to process the equivalence relations is
O(n + ma(2Zm, min{n—1, m})). Although this is slightly worse than the algorithm of
Section 4.9, it needs less space and is on line. By ‘“‘on line,”” we mean that as each
equivalence is processed, we can tell which equivalence class each polygon is in.

Example 5.6: Consider the equivalence pairs example of Section 4.6. Initially, there
are 12 trees, one for each variable. parent[i] = -1, 0<i < 12. The tree configuration
following the processing of each equivalence pair is shown in Figure 5.44. Each tree
represents an equivalence class, It is possible to determine if two elements are currently
in the same equivalence class at each stage of the processing simply by making two
finds, O

EXERCISES -

1. Suppose we start with n sets, each containing a distinct element.

(a) Show that if » unions are performed, then no set contains more than u + 1
elements.

(b) Show that at most » — 1 unions can be perforted before the number of sets
becomes 1.

{c) Show that if fewer than [n/2] unions are performed, then at least one set

Representation of Disjoint Sets 257

=11 -1 =10 =1 =10 =10 =10 =10 =00 =0 -1 =)
ONORORONONONONONONORONG
(a) Initial trees

[-2] [~2] [-2] 2] ~11 - [-1] [~1] [-1]

©)

(b) Height-2 trees following 0=4, 3=1, 6=10, and 8=9
4] -3] [-2]

(c) Trees following 7=4, 6=8, 3=5, and 2=11

(5] (4] t]]
6

19 &)
®

(d) Trees following 11=0

Figure 5.44: Trees for Example 5.6

with a single element in it remains.

{(d) Show that if « unions are performed, then at least max{n — 2u, 0} singleton
sets remain.

Using the result of Example 5.6, draw the trees after processing the instruction
urion(11,9).

Experimentally compare the performance of simplelnion and simpleFind (Pro-
gram 5.19) with weightedUnion (Program 5.20) and collapsingFind (Program
5.21). For this, generate a random sequence of union and find operations.

(a)

(b

(c)

(d)

(a)

(b)

(a)

Write a function heightUnion that uses the height rule for union operations
instead of the weighting rule. This rule is defined below:

Definition [Height Rule]: If the height of tree i is less than that of tree j,
then make j the parent of /, otherwise make i the parent of j. O

Your function must run in O(1) time and should maintain the height of each
tree as a negative number in the parent field of the root.

Show that the height bound of Lemma 5.5 applies to trees constructed using
the height rule.

Give an example of a sequence of unions that start with singleton sets and
create trees whose height equals the upper bound given in Lemma 5.5.
Assume that each union is performed using the height rule.

Experiment with functions weightedUnion (Program 5.20) and heightUnion
to determine which one produces better results when used in conjunction
with function collapsing Find (Program 5.21).

Write a function splitting Find that uses path splitting for the find operations
instead of path collapsing. This is defined below:

Definition {Path Splitting]: In path splitting, the parent pointer in each
node (except the root and its child) on the path from i to the root is changed
to point to the node’s grandparent. O3

Note that when path splitting is used, a single pass from i to the root suffices.
Tarjan and Van Leeuwen have shown that Lemma 5.6 holds when path split-
ting is used in conjunction with either the weight or height rule for unions.

Experiment with functions collapsingFind (Program 5.21) and splittingFind
to determine which produces better results when used in conjunction with
function weightedUnion (Program 5.20).

Write a function halvingFind that uses path halving for the find operations
instead of path collapsing. This is defined below:

Definition [Path Halving): In path halving, the parent pointer of every
other node (except the root and its child) on the path from i to the root is
changed to point to the node’s grandparent. O

Note that path halving, like path splitting (Exercise 5) can be implemented
with a single pass from i to the root. However, in path halving, only half as
many pointers are changed as in path splitting. Tarjan and Van Leeuwen

Counting Binary Trees 259

have shown that Lemma 5.6 holds when path halving is used in conjunction
with either the weight or height rule for unions.

(b) Experiment with functions collapsingFind and halvingFind to determine
which one produces better results when used in conjunction with function
weightedUnion.

511 COUNTING BINARY TREES

As a conclusion to our chapter on trees, we consider three disparate problems that amaz- -
ingly have the same solution. We wish to determine the number of distinct binary trees
having n nodes, the number of distinct permutations of the numbers from 1 through n
obtainable by a stack, and the number of distinct ways of multiplying »n + 1 matrices. Let
us begin with a quick look at these problems.

5.11.1 Distinct Binary Trees

We know that if n = 0 or n = 1, there is only one binary tree. If n = 2, then there are two
distinct trees (Figure 5.45), and if n = 3, there are five such trees (Figure 5.46). How
many distinct trees are there with » nodes? Before deriving a solution, we will examine
the two remaining problems. You might attempt to sketch out a solution of your own
before reading further.

and

Figure 5.45: Distinct binary trees with n =2

5.11.2 Stack Permutations

In Section 5.3, we introduced preorder, inorder, and postorder traversals and indicated
that each traversal requires a stack. Suppose we have the preorder sequence ABCDEF
G H I and the inorder sequence B CA E D G H F I of the same binary tree. Does such a
pair of sequences uniquely define a binary tree? Put another way, can this pair of
sequences come from more than one binary tree?

P

Figure 5.46: Distinct binary trees with n =3

To construct the binary tree from these sequences, we look at the first letter in the
preorder sequence, A. This letter must be the root of the tree by definition of the
preorder traversal (VLR). We also know by definition of the inorder traversal (LVR) that
all nodes preceding A in the inorder segquence (B C) are in the left subtree, and the
remaining nodes (E'D G H F 1) are in the right subtree. Figure 5.47(a) is our first approx-
imation to the correct tree.

Moving right in the preorder sequence, we find B as the next root. Since no node
precedes B in the inorder sequence, B has an empty left subtree, which means that C is in
its right subtree, Figure 5.47(b) is the next approximation. Continuing in this way, we
arrive at the binary tree of Figure 5.48(a). By formalizing this argument (sce the exer-
cises), we can verify that every binary tree has a unique pair of preorder/inorder
sequences.

Let the nodes of an #-node binary tree be numbered from 1 through n. The inorder
permutation defined by such a binary tree is the order in which its nodes are visited dur-
ing an inorder traversal of the tree. A preorder permutation is similarly defined,

As an example, consider the binary tree of Figure 5.48(a) with the node numbering
of Figure 5.48(b). Its preorder permutation is 1, 2, '+ -, 9, and its inorder permutation is
2,3,1,5,4,7,8,6,9.

If the nodes of the tree are numbered such that its preorder permutation is 1, 2,
- -+, n, then from our earlier discussion it follows that distinct binary trees define distinct
inorder permutations. Thus, the number of distinct binary trees is equal to the number of
distinct inorder permutations obtainable from binary trees having the preorder permuta-
tion, 1,2, -+, n.

Using the concept of an inorder permutation, we can show that the number of dis-
tinct permutations obtainable by passing the numbers 1 through # through a stack and
deleting in all possible ways is equal to the number of distinct binary trees with n nodes
(see the exercises). If we start with the numbers 1, 2, and 3, then the possible permuta-
tions obtainable by a stack are

Counting Binary Trees 261

A

@@ (DEEGHI

(a)

(b)

Figure 5.48: Binary tree constructed from its inorder and preorder sequences

(1,2,3)(1,3,2)(2, 1,3y (2,3, 1D(3,2, 1)

Obtaining (3, 1, 2) is impossible. Each of these five permutations corresponds to one of
the five distinct binary trees with three nodes (Figure 5.49).

P4y

Figure 5.49: Binary trees corresponding to five permutations

5.11.3 Matrix Multiplication

Another problem that surprisingly has a connection with the previous two involves the
product of n matrices. Suppose that we wish to compute the product of n matrices:

My *M;* - %M,

Since matrix multiplication is associative, we can perform these multiplications in any
order. We would like to know how many different ways we can perform these multipli-
cations. For example, if n = 3, there are two possibilities:

(M, * M) * M3
My ¥ (M, *M;)

and if n = 4, there are five:

(M * M)+ M) %M,
(M (My*M3)) % My
My * (M xM;3)*My)
(M, * (M, * (M3 *x M)
(M, M)+ (M; xM,))

Let b, be the number of different ways to compute the product of n matrices. Then b, =
1, b3 =2, and b4 =35. Let Mf', i S.j, be the product M,' * M,'+1 o ok MJ.. The product
we wish to compute is M |,. We may compute M, by computing any one of the pro-
ducts M; * M, ,, 1 <i<n. The number of distinct ways to obtain M; and M, , are
b; and b, _;, respectively. Therefore, letting b, = 1, we have
n-1
b, =Y b b, ;,n>1

i=1

If we can determine the expression for b, only in terms of n, then we have a soluticn to

Counting Binary Trees 263

our problem.

Now instead let b, be the number of distinct binary trees with n nodes. Again an
expression for b, in terms of n is what we want. Then we see that b, is the sum of all the
possible binary trees formed in the following way: a root and two subtrees with b; and
b,_;_i nodes, for 0 £ < n (Figure 5.50). This explanation says that

n-1| .
b" = Z b‘- bn—i—l N nz1, and bo =1 (53)
i=0

Figure 5.50: Decomposing b,

This formula and the previous one are essentially the same. Therefore, the number
of binary trees with »# nodes, the number of permutations of 1 to n obtainable with a
stack, and the number of ways to multiply n + 1 matrices are all equal.

5.11.4 Number of Distinct Binary Trees

To obtain the number of distinct binary trees with n nodes, we must solve the recurrence
of Eq. (5.3). To begin we let

B(x)=Y b;x' 5.4
i20

which is the generating function for the number of binary trees. Next observe that by the
recurrence relation we get the identity
xBX(x)=B(x) -1
Using the formula to solve quadratics and the fact that B(0) = by = 1 (Eq.(5.3)),
we get

1 —Vl-4x

B{x)= .

We can use the binomial theorem to expand (1 — 4x)2 to obtain

B(x) = i [1 - [‘f] (—41)"] -3 [m‘fl] Iyl xm (55

Comparing Egs. (5.4) and (5.5), we see that b,,, which is the coefficient of x" in B (x}, is

172
n+1

] (—1y 22n+!

Some simplification yields the more compact form

by = —— [2"‘] ~ 04" /n*?)
n+l1 LA

EXERCISES

1.

5.12

Prove that every binary tree is uniquely defined by its preorder and inorder
sequences.

Do the inorder and postorder sequences of a binary tree uniquely define the binary
tree? Prove your answer.

Do the inorder and preorder sequences of a binary tree uniquely define the binary
tree? Prove your answer.

Do the inorder and level-order sequences of a binary tree uniquely define the
binary tree? Prove your answer.

Write an algorithm to construct the binary tree with given preorder and inorder
sequences.

Repeat Exercise 5 with the inorder and postorder sequences.

Prove that the number of distinct permutations of 1, 2, - - -, n obtainable by a stack
is equal to the number of distinct binary trees with n nodes. (Hint: Use the con-
cept of an inorder permutation of a tree with preorder permutation 1,2, -+, n).

REFERENCES AND SELECTED READINGS

For more on trees, see The Art of Computer Programming: Fundamental Algorithms,
Third Edition, by D. Knuth, Addison-Wesley, Reading, MA, 1998 and “‘Handbook of
data structures and applications,”” edited by D. Mehta and S. Sahni, Chapman &
Hall/CRC, Boca Raton, 2005.

